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MODEL SeRACIOUR aN we 

OBSTACLE COURSE We look at how an 
‘intelligent’ robot may be programmed to 
move freely around a room, avoiding 
obstacles in its path 

PERIPHERAL VISION A wide variety of 
add-ons is available for every home 
cou uter. We give you some valuable a 
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promised last week, our series on 
spreadsheets continues with a look at 
Abacus for the Sinclair QL 

"THE DEFECT EFFECT Deus Ex Machina 

weekly glossary of computing terms 

is a novel game that combines elements of 
arcade-style games with an audio 
soundtrack ——s showbusiness stars 

COMPUTER SCIENCE 

FIGUREIT OUT We COVE! the 
facilities LoGo offers for working with — 
numbers 

HANDSHAKING TO HEADER A 

NAME CALLING We develop a machine 
code routine for the Commodore 64 and 
BBC Micro to complete our search and 
replace program 

DESIGN SENSE Structure is important in 
machine code, particularly with large 
programs. We consider some general 
guidelines 

SINE WRITING Now that our D/A 
converter is complete, we begin to develop 
the software to produce sound signals 

REFERENCE CARD We continue to list —_INSIDE 
extracts from the Z80 programmers’ BACK 
reference card COVER 

Next Week © 
@ Computer-generated 
poetry? In our LOGO course we 
develop a poetry program to 
demonstrate the word- 
handling powers of the 
language. 

@ We discover how robots can 
be programmed to perceive 
objects by comparing what 
they see with an internal 
model. : 

_ @ In our 6809 machine code 
course we begin to develop a 

debugger program. 

1) Why was Stirling Mouse amazed? 
2) What are tape streamers ? 
3) What is a saw-tooth wave? 
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IAN McKINNELL 

In this series we have shown how an 
‘unintelligent? wheeled vehicle might be 
made to move under the control of either a 
human operator or a computer, and we have 
looked at the ways in which a robot arm can 
move ‘intelligently’. Now we consider what 
needs to be done to design a robot that 
moves in a truly ‘intelligent’ fashion. 

First of all, we do not want to control the robot by 
using a human operator. If the operator must 
watch the robot and control its every move then in 
many applications there would be no point at all. 
in using a robot — the person might just as well 
perform the task the robot carries out. This does 
not, of course, apply in all situations. Robots used 
in bomb disposal work are human-controlled, 
because human expertise is still needed to guide 
them correctly. | 

There is also little point in controlling a robot via 
a fixed sequence of instructions stored in a 
computer. This would result in little more than an 
automaton — a device that will slavishly follow the 
built-in sequence regardless of circumstances. 
Again, there are times when such a device is 
useful; robot arms are often considered 
‘intelligent’, even though they carry out a pre- 
programmed set of actions. 

However, our definition of an ‘intelligent’ robot 
was one that would bring you an early-morning 
cup of tea. This cannot be human-controlled, as its 
function is to carry out its task before a human is 
awake. If this tea-bringing device is programmed 
with a fixed sequence of instructions, problems 
will arise if you move your bed or leave a pile of 
clothes on the floor. 

So our definition of intelligent movement is the 
ability of a robot to move around in its 
environment without being controlled by a human 
and without blindly following a fixed sequence of 
instructions. It should be able to travel from one 
point to another, avoiding any obstacle on the way. 

There is a tradition in the field of artificial 
intelligence of using games of one kind or another 
to examine complex problems of this sort. Just as 

_chess-playing programs have given considerable 
insights into other branches of artificial 
intelligence, so maze-running robots can help in 
the definition of truly intelligent movement. In the 
late 1970s, ‘micromouse’ contests began in the 
USA, and in 1980 the first such competition was 
held in Britain. The idea was very simple — a large 
maze some three metres square was constructed, 
and contestants had to design robot ‘mice’ that 
could find their way unaided to the centre. The 
maze consisted of small squares of equal size, the 
sides of which were sometimes open to show a 

Building Sight 
lf their processors are 
sufficiently sophisticated, 
mobile robots can learn a 

catalogue of archetypal objects 
for use with shape-recognition 
and pattern-matching 
algorithms. The Beasty robotic 
arm here is equipped with a 
Snap camera, which produces a 
digital picture, and the Snap 
software, which includes an 
object recognition module. Once 
the object has been ‘seen’ 

from different viewpoints, the 
arm has a reasonable chance of 
being able to recognise it in any 
position 
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possible route, and sometimes closed to denote a 
wall. The mouse that reached the centre in the 
shortest time won the contest. 

At the first British Micromouse contest, there 
were five entrants only. Some of these behaved in 
an extremely erratic fashion — one could not even 
travel in a straight line and even the best of the 
mice became quite bewildered once it had turned 
a couple of corners. In the same year, the 
European Finals of the competition were held, 
and mice began to arrive from Finland, 
Switzerland and Germany. Eventually, a mouse 
did succeed in negotiating the maze correctly; this 
was Nick Smith’s ‘Stirling Mouse’, which was 
equipped with simple mechanical sensors that ran 
along the top of the maze walls and was powered 
by a simple stepper motor. Since then, interest in 
such competitions has grown, and in the 1984 
Euromouse Contest in Madrid the fastest time to 
the centre of the maze was 31.4 seconds. Some 
contestants were still unable to reach the centre at 
all, but most succeeded. 

MAPPING THE MAZE 
So how does a robot mouse negotiate a maze? 
In general, the robot must have a precise method 
of moving itself around so that it knows its exact 
position at any time — this can be achieved by 
mounting the robot on wheels and driving it with 
stepper motors, often using some form of internal 
position feedback, such as shaft encoders. The 
robot also requires a set of sensors to detect the 
presence or absence of walls so that it can 

construct a ‘map’ of the maze. In Micromouse 
contests, the robots are allowed a couple of 
training runs, which they use to work out a plan of 
the course. They then make the competition run, 
during which they are timed in their attempts to 
reach the centre. | 

Although precise methods vary from one robot 
to another, one answer is to have the robot fitted 
with a simple tactile sensor at its front. Sitting at 
the centre of each square of the maze in turn, it can 
test to see if a wall is directly in front of it. It then 
turns clockwise through 90°, tests again, and 
repeats the sequence. Eventually it will ‘know’ 
where all the walls are in each square of the maze. 
This information can be stored as a single four-bit 
binary number — so 1111 in binary would 
represent a square with walls on all four sides 
(impossible in practice, as the robot could never 
enter that particular square), and 0000 would 
represent a square with no walls at all. 0111 would 
then represent a square with three walls and one 
opening — a cul de sac. 

This information could be held in a two- 
dimensional array — in Basic, DIM A(16,16) could be 
used to represent a maze with 16 ‘cells’ in each 
direction. The robot then has to work out a route 
that will take it to A(8,8), if that is considered to be 
the centre of the maze. Often the robot has a built- 
in computer program that works out a tree 
structure for each route through the maze. Many 
of the branches of the tree will lead to dead ends or 
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bring the robot back to a point it has already 
visited; in these cases the branches are ‘pruned’ 
and disregarded. The program then searches along 
the remaining branches to find the route with the 
least number of squares. It then adopts that Pa as 
its route to the centre. 

This method can be adapted to provide a more 
efficient strategy. The sensors on the robot are. 
crucial to its success. For instance, simple 
mechanical touch sensors require the robot to 
actually bump into each wall to map its path; 
proximity sensors can detect a wall without 
actually touching it and a distance sensor can 
detect the position of a wall at the end of a long 
clear path in the maze. Obviously, equipping the 
robot with four sensors instead of just one would 
enable it to ‘look’ in all four directions at once and 
would remove the need to make it turn around in. 

each square. 

AROUND THE HOUSE 
So we can see that a robot can act ‘intelligently’ 
as it negotiates a maze. In many respects, the 
problem of constructing a robot that can find its 
way around your home is very similar. The robot 
must use sensors to work out the positions of all 
the objects in a room, and it must then plan a route 
that will take it round any obstacles to its 
destination. The additional problems involved in 
this type of intelligent movement stem from the 
fact that a room is much more complex in design 
than a maze. The typical room is not neatly 
divided into squares, nor do all its contents remain 

in the same place. Your tea-making robot may 
learn the position of various objects — but if you 
move a chair, or if a cat sits on the floor, the robot 
must then modify its chosen path. 

This problem can only be solved by having the 
robot make continual use of its sensors to update 
its internal map. The problem of the cat requires 
more thought because, as robots do not know 
anything about cats (or about people, for that 
matter), it is difficult for it to work out what to do 
at its first feline encounter. (No doubt the cat will 
have the same problem when it first meets a 
robot.) The best solution is to fit the robot with a 

“ movement sensor — which is a distance sensor that 

responds to variable distance measurement and 
can thus cope with moving objects. Once the | 
moving object has been detected, the best thing 
the robot can do is to stop moving altogether until 
the object itself stops moving or goes away. This 
may not sound very intelligent, and is certainly less 
friendly than going up to the cat and stroking it, 
but such an action is very similar to the reaction 
shown by many animals, which ‘freeze’ when they 
detect moving objects. 

The whole subject of intelligent movement is 
thus intrinsically linked to the use of sensors in 
conjunction with a computer program. A robot 
without sensors will not be able to move 
intelligently, and the more sensors a robot is 
equipped with, the better its knowledge of the 
world will be. It is this knowledge of the world that 
enables the the robot to exhibit signs of 
intelligence. 

A Room Of Gne’s Own 
Finding a way around unknown 
objects is never easy. Path A 
shows the track of a simple 
household robot trying to find 
the electrical socket. Its only 

object avoidance algorithm 

(known as ‘wall-following’) is to 
follow the edges of things while 
its short-range sensors seek the » 
object. This primitive method 

can be very successful in simple 
Surroundings, but is susceptible 
to traps and pitfalls of the kind 

shown here. 

Path B shows the track of a 
similar robot with a slightly 

improved algorithm: when it has 
to turn along the side of an 
object it prefers to turn through 

the smallest possible angle 
since this will reduce the 

amount of ‘back-tracking’ that it 
does. This simple change 
greatly reduces its vulnerability 

to traps and allows its scanning 
sensors to control its behaviour 

THA more effectively 
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MODEL BEHAVIOUR 

Our series of articles on | spreadsheet 
modelling has so far concentrated on Psion’s 
Vu-Calc, a simple cassette-based package 
for the Spectrum and BBC Micro. Here we 
tum our attention to Abacus — the 
spreadsheet package, also designed by 
ts au eee with the Sinclair bid 

has centred on the four software goede 
‘supplied with the machine: Quill (a word 
processor), Archive (a database), Easel (a 
graphics program) and Abacus (a spreadsheet). 
These packages contain some elements of 
integrated design (see page 502). Data may be 
transferred between them; spreadsheet models, 
for example, may be displayed as graphs or 
incorporated into a document prepared using 
Quill. The display screens are similar, and some 
commands are common to all the packages: for 
example, three of the QU’ five function keys give 
identical results in all four applications (F1 is the 
Help key, F2 controls the ‘prompts’ area at the top 
of the screen and F3 calls up commands). 
However, the programs must be loaded and run 
separately. 

There are two different ways of loading Abacus 
(or indeed any of the QL packages). The first 
involves putting the Abacus cartridge in 
Microdrive 1 and then pressing F1 to select the 
monitor option or F2 if a television is used as a 
display. The OL packages include ‘boot’ routines, 
and the program will thus load automatically. 
Alternatively, if the screen is already selected, 
enter lrun mdv1_boot (assuming Abacus is in drive 
1), and the initial screen will appear. 

The screen shows the top left-hand portion of 
the spreadsheet matrix — Psion refers to this as a 
‘srid’ in its documentation. Initially, columns A to 
F and rows 1 to 15 are displayed, although Abacus 
has a maximum grid size of 64 columns and 255 
rows. (Compare this to the maximum Vu-Calc 
grid size of 28 columns and 55 rows.) Above the 
grid display is a collection of prompts, and below it 
is a data entry line, together with information 
showing the status of the current model. The 
prompts can be removed (by pressing F2), but are 
very useful for beginners as they explain the 
choices available at any time. This is, in effect, a 
‘menu’ area, indicating which function keys are 
used to control various operations, and showing 
how to move the cursor or go directly to a 
particular celi, how to enter data or text, and how 
to call up commands. It is not a true menu, 
however — options cannot be selected by 
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positioning the cursor over the relevant choice, but 
must be typed in by the user. 

Using Abacus for basic tasks is very simple, 
although for more advanced modelling some 
commands and expressions will take some time to 
get used to. The following example, again based 
on a home budget, will illustrate Abacus at work. 

First of all, we need a general heading. As with 
Vu-Calc, text entries must be preceded by a — 
double quotation mark. We will call our model 
CASH FORECAST and, by pressing the 
appropriate cursor key, we move to cell D1 and 
simply type a double quote followed by the text. 
Abacus, like most spreadsheets, allows text to 
‘overflow’ a cell if the adjacent cell is empty, so it is 
easy to enter even long titles anywhere on the grid. 

CASH FORECAST 
We can also underline the heading, thus improving 
the appearance of our model. To do this, we must 
move the cursor to the cell below our title (D2) 
and enter rept (“=”,len(d1)). Here, rept is the 
equivalent of Vu-Calc’s REPLICATE command, and 
= tells the program which symbol to use (we are 
using the ‘equals’ sign as a double underline). The 
rest of the command — len(d1) — is a neat way of 
telling Abacus to repeat the symbol for the length 
of the text in cell D1. 

Unlike Vu-Calc, which has a fixed column 
width of nine characters, Abacus allows us to 
select different widths for different applications. 
Here we need to make column A wider, to allow 
enough room to enter text of varying length, and 
we also require the other columns to be made 
narrower, so that the date for six months can be 
displayed. To do this, we use the function key F3, 
following this with G (to select the GRID command) 
and W (for the WIDTH command). The input line 
will indicate that the current width is 10. We want 
to change the width of column A to 15, so we enter 
15 in response to the prompt. The program will 
now prompt for a range of cells to which the new 
width will apply. Entering A and A as the two 
parameters indicates that only column A is to be 
set to this width. We must then go through the 
same procedure again, this time selecting a width 
of 6 and a range of B to G. There is now sufficient 
room for six months’ figures to be displayed. 
We must now enter labels for the ‘months’ 

columns. These may be done by simply typing the 
relevant text in each cell, but Abacus has a special 
facility for calling up month names. Move the 
cursor to A3 and type row=month(col()-1). The 
input line will now prompt for a range — enter B 
and G in reply to the prompts, and the columns will 
be labelled automatically. ‘January’ and 

————$——————— 
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x, 

‘February’ contain too many letters to fit into our 
adjusted columns, so these must be abbreviated. 
This is done by overtyping, remembering the 
quote marks to indicate text. 

The next step is to enter headings for the various 
rows, moving the cursor down a line after each 
entry (unfortunately, Abacus does not provide this 
as an automatic facility). Our model assumes that 
the householder is a salesman whose income is 
made up of both basic salary and commission. The 
model allows income to be calculated on the basis 
of commissions on forecast sales plus basic salary. 
Actual sales achieved can be entered as the 
months pass, and revised forecasts can then be 
made for future months. Any negative values are 
displayed in brackets on the finished grid. These 
are the headings to be entered: Sales: forecast and 
actual; Commission; Basic salary; Total income; 
Expenses: Mortgage, Rates, Water rates, 
Electricity, Gas, Telephone; Total expenses; Net 
in or (out); Opening and Closing bank balance. 

After column and row headings have been 
entered, we can begin to fill our spreadsheet with 

figures. First we'll enter the sales forecasts for the 
six months displayed on the screen. These are 
£10,000, £12,000, £13,000, £11,000, £12,000 
and £15,000, but should be entered without the 
pound sign or comma. Actual sales can’t be 
entered yet, so well continue by calculating 
commission on the forecast sales. This is 
calculated as 20 per cent of sales over £10,000, so 
the formula to be entered into cell B10 is 
row=(sales-10000)*.2. Once again, the range 
required is B to G; enter these letters in response to 
the prompts and the commission will be calculated 
and instantly displayed. 

If the basic salary is £1,000 per month, this can 
be entered at cell B11 as row=1000, again over the 
range B to G. The formula for total income may 
now be keyed in at B13. This is row=sum(col) witha 
row range of 0 to 11 and column range B to G. This 
completes the income calculation, but the 
presentation of the model can be improved by 
adding rules above and below the ‘total income’ 
row. To do this, move the cursor to B12 and enter 
row=rept(“—” ,width()-2). Abacus will respond by 
producing four dashes under each ‘basic salary’ 
figure. To carry out the same operation on row 14, 
thus producing dashes above and below the ‘total 

income’ row, the ECHO command is used. With the 
cursor still at B9 the system will prompt for a range 
over which to reproduce the underlining — 
respond with B14:G14. (If you forgot to leave spare 
rows when the headings were entered, these can be 
inserted by using the GRID command.) To 
complete the formatting, all the underlining 
should be ‘justified right’ by using the J command 
over the range B2 to G14 . This will ensure that all 
the dashes will be aligned to the figures. 

Expenses may now be entered, using the row 
formula for standard monthly figures such as the 
mortgage, or by simply entering each figure into 
the relevant cells for occasional payments like 
electricity and gas. Total expenses may then be 
defined as the sum of all these figures, in the same 
way that the total income was calculated. 

Similarly, the net amount in or out can be 
calculated as the total income minus the total 
expenses. Unfortunately, Abacus appears to 
ignore any part of acomman4d that follows a space, 
SO we cannot simply enter row=total income-total 
expenses. We must therefore rename the total 

eenecrenzezeca 
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income line as ‘income’ and enter row=income-total, 
again for the range B to G. Each month’s net 
inflow and outflow will now appear on screen. 

The final step is to calculate the bank balances. 
First enter the initial balance — an overdraft of 
£200, perhaps. Enter this as -200. Now calculate 
the closing balance, using the formula 
row=net+opening with the cursor at B28, over the 
now-familiar B to G range. This will give January’s 
closing balance. Opening balances for other 
months are calculated by entering at C27 the 
formula row=B28. To make this work over all 
columns, it is first necessary to change the order of 
calculation from row to column by using the 
DESIGN command. All opening and closing 
balances will then be calculated, and will be 
recalculated immediately if any figure is changed. 
As it stands, our model will depict negative 
balances as figures preceded by a minus sign. To 
change this format so that brackets signify a 
negative figure, we use the UNITS command and 
reply to the prompt with B. 

Our model is now complete. It should be saved 
by selecting the SAVE command and an 
appropriate file name chosen. The model may 
then be printed out, or different figures entered. 
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Spreading The Word 
Attractive screen design, good 
features and a large prompt/ 
help facility makes Abacus a 
pleasant and easy spreadsheet 
in use. Here we show the ECHO 
command in use copying one 
row to another, the DESIGN 

command options for 
formatting the spreadsheet, and 
the Month feature producing 
the month names at the press of 

a key. Also featured are the 
default screen with the Prompts 
menu at the top, and the blank 
sheet showing the Command 
menu 

IAN McKINNELL 
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Intelligent Copy 
The replace routine has to move 
large sections of the BASIC 
program up and down in 
memory when it inserts new 
variable names of different 
lengths. In this it encounters the 

four possible conditions of the 
source and destination 
addresses. If it always copies 

from the start of the source 
block then, when the head of the 
destination block overlaps the 

tail of the source block, the 
copying will overwrite some of 
the source data. An ‘intelligent’ 
copy routine will detect this case 
and avoid corruption by copying 
this source block from the tail 
first. A ‘dumb’ copy always 

copies from the head of the 
source block 

LIZ DIXON 

NAME CALLING 

Having looked in more detail at the way a 
BASIC program is stored, we can now extend 
the variable search program to include a 
facility to replace one variable name by 
another. Here we look at the BBC Micro 
and the Commodore 64 versions; in the 
next instalment we will develop the same 
program for the Spectrum. 

Our variable replace program is a more 
demanding utility than the simple search for 
variable names that we developed on pages 664 
and 700. For this reason we need to add a 
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machine code program. The BBC Micro’s 6502 
CPU and the Commodore 64’s 6510 CPU have 
the same Assembly language, so it is a good idea 
to look at them together. 

Our first task is to find a method of holding two 
separate programs in the computer at the same 
time. As we have already explained, we can do 
this on the BBC Micro by altering the built-in 
BASIC variables PAGE and HIMEM. On the 
Commodore 64, we need a machine code 
program to alter the various pointers in zero page 
memory. The first part of the Assembly language 
listing, beginning at the label SWITCH, will do this 
for us. 

The routine SWITCH will enable us to 
accommodate two BASIC programs: one 
beginning at address 800 hex (the usual place for 
a BASIC program); and the other beginning at 
address 9000 hex. SWITCH begins by looking at 
the pointer TXTTAB to see which of the program 
areas is current, and then changes the pointer 
values to make the other program area current. 

TXTTAB is changed to point to the start of the 
new program area, then FRETOP and MEMSIZ must 
point to the byte after the last byte of the new 
program area, while FRESPC points to the end of 
the new program area. The program then 
searches down the chain of link address pointers 
(see page 704) to find the end of the Basic 
program, using VARTAB as the temporary pointer. 
When it finds the two zero link address bytes that 
mark the end of the program, it increments the 
previous pointer twice and copies the result into 
ARYTAB and STREND. In this way VARTAB, ARYTAB 
and STREND all point to the byte immediately after 
the BASIC program. 

The main changes to the BAsic program that we 
need to make are the extra subroutines at lines 
30500 and 30600. The first of these finds the end 
of the BASIC program, using the length of line 
bytes in the BBC version and the next line 
pointers in the Commodore 64 version. 

The subroutine at line 30600 actually makes 
the change in the variable names. When the old 
and new variable names are the same length, the 
new name can simply be written over the old. 
Where the old and new variable names have 
different lengths, the procedure is a little more 
complicated. In this case, the program must either 
make extra space, or close up any unneeded 
space in the program it is changing, and make 
corresponding changes to the variables it uses to 
keep track of its position in the program being 
altered. It must also change the length of line byte 
in the BBC version and the next line pointers in 
the Commodore 64 version. 
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Hard To Say . arate 
‘Winchester’ has become the 
generic name for all hard disk 

drives, though properly it refers. 
only to those that employ 

IBM’s Winchester 
_ technology. Computing 
legend has it that 

_ this name- 
derives from 
the prototype 
‘Machine's — 
having been 
called a 30/30, 
which is the 
Calibre and load 
designation of the 
famous Winchester rifle. 
The more prosaic explanation 
is that the technology was 
developed at IBM’s plant in 
Winchester, England 

HANDSHAKING | 
In computing, the precise timing of operations is 
essential. Even such 
microprocessors as the Motorola 6502 run at a 
clock rate of 1 Mhz, which means that a primitive 
processor operation such as_ fetching an 
instruction from RAM takes about one 
microsecond. Remote devices such as printers and 
disk drives, however, operate at very much slower 
speeds — a dot matrix printer might take 3,000 
microseconds to print one character. Transferring 
data between the computer and its peripherals, 
therefore, must be governed by strict protocol: 
handshaking is an interlocking protocol by which 
one device signals its readiness to receive or 
transmit a block of data, but does nothing until a 
corresponding ‘ready’ signal is sent by the other 
device. If transmissions are not controlled in some 
such way, data will be corrupted by the faster 
device reading the same data twice, or by the 
slower device reading only the start of i incoming 
data. 

Handshaking can be managed entirely 
| software, but is reasonably easy to ‘hard-wire’ into 
the device interfaces. The Motorola 6802 
Peripheral Interface Adaptor (PIA), for example, 
communicates through its data register: when this 
is written to, a flag is automatically set in the PIA’s 
status register; reading the register then resets the 
flag. Handshaking with this facility is reasonably 
Straightforward: the CPU sends a character to the 
PIA, and continues with whatever program 
processes are current until it finds that the PIA’s 
read/write flag has flipped, indicating that the 
external device has read the data register. This 
means that the CPU can send the next character to 
the PIA. The state of this flag, then, shows the 
PIA’s state of readiness, and could be wired to one 
of the chip’s pins to Serve as the veel Not 
Ready’ signal line. 

HARD DISK 
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old-fashioned — 

An increasingly common alternative to the floppy 
disk drive with its interchangeable slow-speed/ 
low capacity disk is the high-speed/high capacity 
hard disk. In this device the disk spins constantly at 
high speed in a sealed atmosphere — sometimes a 
vacuum, sometimes an inert gas such as nitrogen 
— and is never removed from the drive. The 

storage capacity of the hard disk is therefore 
considerably higher than that of a floppy disk, 
where the need for robustness, cheapness and 
convenience affects the engineering design and 
precision. Hard disk drives with between 10 and 
30 Mbyte capacities, costing about the same as a 
modest business micro, are now freely available. 

Managing the hard disk’s contents requires 
some care — particularly the duplicating of system 
software and data files. Many owners ‘back-up’ 
the contents of the hard disk onto floppy disks 
every day, so that ifa crash occurs, the floppies can 
be used to reconstitute the system. Copying 
several Megabytes can take hours and many disks, 
however, so high-speed tape recorders (called 
‘tape streamers’) are often used instead of floppy 
disks. Even so, new software must be loaded onto 
the hard disk somehow — from a floppy disk drive 
or via a data link to another system. Either method 
increases the not inconsiderable cost of the device. 

HASHING 
When data domains are large but ome space is 
limited, some method of ‘Mapping the domain into 
the file record structure is necessary; hashing (see 
page 273) is a common method that combines 
efficient use of file space with reasonably high 
record access speeds. Let’s assume that records ina 
file are to be arranged alphabetically according to 
the word in the first field of the record, and 
suppose that the field is 10 characters long: it 

_ would be very convenient if the ASCII characters 
of the word could be used to give the position in 
the file of the record — ‘A’ should go in Record 1, 
‘B’ in Record 2, and so on. The number of possible 
combinations of 10 ASCII codes in the range 65 to 
90 is enormous, however, and no file could 
accommodate them. The solution is to ‘hash’ the 
name’s codes so as to produce a reasonably sized 
number. In this case, several different names will 
probably produce the same hash; when a record is 
to be stored but its hashed location is found to be 
occupied, the hash itself is rehashed to produce 
another possible location for the record. 

HEADER — 
Data or programs are stored on tape or disk in files 
of various different formats (see page 124). The 
first information in the file, therefore, is written 
there by the system at file creation time, and 
consists of the file’s title, type and length. This is 
the file header. If you listen to a data cassette on an 
audio cassette player you will hear a high-pitched 
tone first (the synchronisation reference tone), 
followed by a short burst of data followed again by 
the reference tone; this first section of data is the 
file header. 
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In the last section of Workshop we built a 
digital-to-analogue converter to expand our 
user port system. We can now begin to 

design software to produce sound signals 
from this device. In this instalment we look 
at the production of different waveforms 
and discover how to determine the duration 
of a note. 

Once these steps have been followed, we can test 

the system using a short Basic program. In essence, 

sound is generated electrically by providing an 

oscillating voltage to a speaker. We can generate a 

crude oscillating voltage output from our D/A 

converter by changing the contents of the user port 

data register from 0 to 255 and back in rapid 

succession. Type in the following program and 

RUN it. Turn the D/A potentiometer clockwise 

until sound can be heard. 

Si i eee 

DDR=346579 2 DATE 
DDR, 255 

KEKE 

DATRES 

ADVANCED COURSE 

Notice that the Basic program has a repeating 
structure, all crunched down onto a single line to 
produce maximum speed. There is a delay loop 
inserted between the data register being set to 255 
and it being set io 0. The value N in line 35 sets the 
length of this delay. Try altering the value of N and 
re-running the program. You will notice that the 
pitch of the tone heard goes down as the value of N 
increases. 

The highest pitch obtainable from this BAsIc 
program will occur when the delay loop is 
removed altogether. Even a loop executed once 
has an audible effect on the pitch of the note heard. 

If you have experimented with different 
values of N in the BASIC program given, you will 
have noticed that changing the value of N by 1 hasa 
significant effect on the pitch of the note. BASIC is 
just not fast enough to allow us to control the rate 
of oscillation accurately. Instead we must use 
machine code. 

In the next instalment of Workshop we shall 
look at the difficult problem of controlling pitch 
and volume from machine code. Here we 
concentrate on devising a program to produce 
different waveforms. The waveform produced by 
the BASIC program used earlier was a Square wave. 
It is, however, possible to produce other 
waveforms, which alter the ‘quality’ of the tone 
heard. We can digitally synthesise sine and saw- 
tooth waves by taking a number of samples of the 
waveform and putting them in a look-up table. 
The machine code program required to place 
these samples one after another in the data register 
is in essence very simple. Our illustration shows 
these three waveforms, together with 
accompanying look-up tables for sine and saw- 
tooth waves. If the waveform cycle is divided into 
steps, and these steps sampled, then the program 
loop that sends these samples out through the user 

port is shown left. 
In producing sound, timing is crucial. Next to 

each instruction is the number of machine cycles 
required to execute that instruction. From this 

formula we can calculate the total number of 
machine cycles it takes to produce one complete 

waveform cycle: number of machine cycles = 
2+(44+-4+242+3)x steps —1 = 1 + 15 X steps. 

If the wave is split into 80 samples then the 
number of machine cycles required to produce 
one waveform cycle is 1,201. : 

As each machine cycle in 6502 code takes 
about a millionth of a second, the total number of 

waveform cycles that can be produced in one 
second (i.e. the frequency of the note) is given by 
this calculation: frequency = 1,000,000/1201 = 

832 Hz. As middle C is 512 Hz, the note produced 
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“THE SAW-TOOTH WAVE 

AMPLITUDE 

-_THESQUARE W WAVE 

Form Filling 

The sine wave and the saw-tooth 
waveforms are Created by first 
deciding how many sample 
steps are to constitute one cycle 
of the wave. These samples of 
the wave’s amplitude are then 

calculated and stored in a look- 
up table. The values in this table 

can then be copied in sequence 
to the user-port data register 

_ and thus to the digital-to- 
analogue converter where they 
become voltage levels. The 
advantage of the look-up table i is - 
that it allows the time- 

- consuming Calculations to be 
done in advance; actually 

generating the waveform 

therefore takes little time, and 

_ this makes a frequency range of 

_ several octaves possible. 

Without the look-up table the 

range would be restricted to two 
octaves. 

The square wave can be 
generated by a BASIC program. 
because the processisso 
simple. BASIC’s slowness, - 
however, restricts the frequency 
range considerably 

~ LOOK: uP P TABLE 

- GENERATING PROGRAM , 

sheild be aitchod just a a notes ager a than 
middle C. 

It can be seen that the number of sample steps in 
which we choose to divide our waveform has a 
direct effect on the frequency of the final note. 
Doubling the number of sample steps would halve 
the final note frequency. Obviously, the more 
samples we make of the note the nearer we are 
likely to get to the tone quality we are synthesising, 
but this must always be weighed against the final 
maximum frequency that can be achieved for a 
given number of steps. 

One waveform cycle is unlikely to be long 
enough to be audible, so we must also include 
code to repeat the waveform-generating section of 
code a set number of times. The number of repeats 
can be determined by setting a counter value and 
decrementing it to zero. To give a large range of 
counter values, a 16-bit number stored in two 
adjacent locations has been used. In addition to 
this code, interrupts are disabled at the start of the 
program by SE1 and re-enabled by CL1 at the end. 
If interrupts were to occur during execution, then 
this would make the timing of the program 
inaccurate. However, we can disable some 
interrupts only; non-maskable interrupts, if they 
occur during program execution, can still be the 

cause of some timing errors. © 

The waveform data must be set up in : memory ‘ae : | 
asa look-up table, witheach waveformtypetaking  —_— 
80 consecutive locations. In the Commodore 
version the sine wave look-up table is located in 

memory starting at $C000; the saw-tooth tableisat 
$C050 and the square wave table starts at SCOAO. 
The machine code program is.designed to default _ 
to load data from the sine wave table using 
indexed addressing, but we can switch to another 
table by modifying the program directly with a 
POKE from sasic. The LDA part of LDA SINE,X is in 
location $C103. The start address of the table of | 
data to be loaded has its LO—byte in location 
$C104 and its HI-byte in location $C105. To modify 
the start address of the data to be loaded all we 
have to do is to change the number held in $C104. 
Normally, for a sine wave, this location will hold 0; 
if we wish to change to a saw-tooth wave then all 
we need to do is change the contents of $C 104 to 80. 
Changing the contents of this location to 160 will 
change the waveform to a square wave. | 

The BBC version is also designed so that the 
look-up tables start at the beginning of a new page 
in memory. Because the tables start at a new page, - 
the HI-byte of each of the table start addresses is 
the same, and we need modify the LO-byte only. 
On a normally configured BBC Model B in mode 
7, HIMEM is &7C00. By lowering the top of memory 
by three pages we allocate more than enough 
space for the look-up tables and machine code 
program. 

BEE EEE EEE EEE EET 

A a ate ee oe a ea 

ie ia ++ 

;++ CBM 64 SOUND ++ 
pt+ GENERATOR ++ 
5+ te 

5 bE EE EEE EEE EEE EET 

AREER EEE EAE EEA EET 

PORT =. SGa77. ;DATA REGISTER GDDRESS 
STEFS = 30 ;NO. OF STEPS IN WAVE 
+= $COO8 

+++ SET UP DATA TABLEGREA. #+++ 
SINE ¥=K4+STERS 

SAW K=K4+STEPS 
SGUARE #=*+STEFS 
NUMBER #=*+2 

COUNT . #=#42 

p++++ MGIN PROGRAM ++++ | 

eo} ES ty Yat 
AD Fa ce LDG NUMBER. 15 . ee alee 3 
SBD F2 ce SE GUN sSET COUNT VALUE 9 | 
AD Fi CoO - LDA NUMBER+1 SrA a has 
SD FR-co ' STH COUNT+1 

LOOF2 
AZ ae LDX ##0@ 

AL OOF . 
BD Ba CA LDA SINE,X :GET DATS 
BD @i DD STA FORT :FUSH TO USER FORT 

ES TNX 
E@ 5@ CFEX #STERS < 
D@ FS BNE LOOF? SEND GF ONE CYCLE 

s4444+ DECREMENT COLINT +444 
AD F2 Co LDA COUNT 
38 - SEC 
EF @1 SBC #481. 
8D F2 Ce STA COUNT 
AD FS co LDA COUNT+1 

7 oe SHC #80 
8D FS ca STA COUNT+1 SG Ne 
De Ea BNE LOOF? 2IF HIBYTE?2 ~ 
Ao a2 LDA ##00 eae 
CD F2 Coe CMP. COUNT 
D@ D9 é BNE LOOFZ. 3IF LOBYTE:@ 
58 2 ip bes 
58 RTS 
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4 

The machine code can be entered into your 
machine by typing in the source listing provided 
and assembling it to create a hex file that can be 
loaded whenever required. The look-up tables 
can be generated by running the following 

99% GEM *2** CBM SOUND CALLING FROGRAM *#2##* 

oe ad er 

= Gin DH=G:REM FOR CASSETTE DM=1 

92@ IFG4=@ THENG=1:LOG6D"SSOUND.HEX",Di',1 

ToS 3: 

i@@@ REM **#* SET UF DATA VALUES #*x#® 

1485 5=8@ :REM RUMBER OF STEPS 

1@@7 TE=12*4094 : REM START OF DATA AREA 

1i@@& : 

1@i@ FEM #*¥SINE WAVE EF 

ive@ FOR I=@ TO 5-1 

LARA Y=H=1SFS*SING XD +1 2S 

1940 FORE TetI,y¥ 

1@45 X=E+2/5 

1@S@ NEXT f s 

i94@ : 4 

1@45 REM **#* SAW WAVE #EHE 

1@7@ Y=255:TR=TH+S 

i@sAa FOR [=@ TO S-1 

1096 FORE TRtI,7 

11@@ Y=Y¥-2S5/S 

Lita NEAT I 

M1285: 

11235 FEM *®*** SGUARE WAVE ###*® 

4150 Y=255: TR=THt+S ; 

114@ FOR [=@ TQ S/e-1 

LiSO PORE TRt+L,¥ 

114@ NEXT I 

1165 Y=@ 

117@ FOR I=s8/2 TQ S-i1 

118@ FORE TRtI,y¥ 

1190 NEXT I 

LESS 

[AGO REM **** DISPLAY DATA TABLES ###* 

S005 TH=12*4a96 

SiG FORI=TH TQ TR+i*Ss—-] 

2@2@ FRINTI,I-TB ,PEEE (YT) 

2@3@ NEXT 

-After running this program, type NEW and then 
type this sample program that demonstrates how 
to use the machine code, giving the SYS and POKE 
addresses required to interact with the machine 

code from sasic. This program asks the user to 
enter the wave type required and then produces a 
tone each time a key is pressed. 

1@ BEM *#*# CBM 44 SOUND #kE® 

oA REM «##** SAMPLE FROGRAM Hx#* 

as 

4% DDR=54579:F0KE DDR,255: REM ALL QUTFUT 

65 CL=49292 :REM COUNTER LOBYTE LOCATION 

&? Th=49412 :REM TYFE LOBYTE LOCATION 

7@ SQUMD=49294: REM FROGRAMN START ADDRESS 

75 FEM *#* SET COUNTER VALUE ®* 

GQ NUM=8@s NHI=INT ONUM/ 256) s NLO=NUA-2562NH I 

Q2 FPOKE CL,NLO:FORE CL+1,NHI 

& FPRINTCHRS (147): REM 

86 INFUT"WAVE TYFE (0 
87 FOKE TL,WT*s 
88 PRINT: PRINT"PRESS 
9Q GETA#: IFA#="" THEN? 
1949 SYS SGUND: REM CAL 

4 11@ IF At="X" THEN &S 

124 GOTG 7a 

CLEAR SCREEN 

SINE (1)SAW (2) 5QUARE"s WT 

ANY KEY (RUN/STOF TO END)" 

@ :REM WAIT FOR FEY 

L. MACHINE CODE 

If you do not have an assembler or do not 
understand Assembly language then you can still 
use the machine code program by typing in this 
BAsic loader and running it. In this case, you can 
omit line 920 from the program that sets up the 
look-up table. 

14 REM ***#* BASTC LOS 

2A FEM #RE HAC 

SQ FOR T=49294 TO 494 

40 READ A: FORE 1,4 

a@ CC=CC+& 

60 HET I 

70 READ CS:1F ClesCs 

10G 

114 

120 

120 

144 

pan 4) 

144 

17a 

DATAZ42,192,206,2 
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DEF FOR CEM SOUND #### 
HIME CODE KREBE 

4S 

THEN PRIHT"CHECESUM ERROR": END 

DATAL ZO, 17%, 240,192,141 ,242,192 
DATAL72%, 241,192,141,245,192,162,0 
DATAIS9,@,192,141,1, 221,232, 224,90 
DATG208 , 245,175,242,192,56,2335,1 
DATG141, 242,192,173, 243,192,222,8 
DATA1I41 , 243,192, 208,224,167,0,205 

17,88,96 
DGATA97115: REM*#CHECESUM* 

FOR THE BBC | eo 
As the BBC has its own built-in assembler, the 
process of combining Basic with machine code is 
substantially easier than on the Commodore 64. 

1198 
1198 
1200 
1220 
123a 
1240 
1250 
1268 
12778 
128a 
1290 
13519 
1320 
1230 
124@ 
1350 
156 
1270 
128a 
1=90 
1428@ 
1418 
1428 
1438 
144@ 
1450 
1455 
1464 

148@ 

=aae 

2028 

2825 

2828 

[04a 

2850 

=46@ 

=07@ 

2a98 

=100 

=11@ 

212a 
2128 

2=14@ 

2148 

2g. 

2180 

2170 

228 

2228 
bah Ei led 
pret are) 

22409 

SEaa 

2278 

2288 

2298 

25ae 

2218 

PaaG 

S800 

28208 

2030 

2048 

S50 

S050 

2a7@ 

2088 

ZATA 

. 2108 

211a 

21208 

ies 

S124 

S144 

S150 

2140 

REM *#** BEC SOUND FRUGRAM #*®** 

MODE 7 
HIMEM=HIMEM-£@2@1 

MCZ=HIMEM+1 

DDR=2FEG2: 7 DDR=255:REM ALL GUTFUT 

por t=£FE4@: REM USER PORT CATA REG 

steps=6@ :REM NO. GF STEPS IN & WAVE 

table start=MC% 

FPROCset up tables 

FROCmachine code 

FROCsample program 

END i 

DEF FROCmachine code 

FOR apt#=1 TO 3 STEF 3 

PH=MCA 
sine=F%: PX=P4t+steps 

saw=F75 FA=P4t+steps 

@ square=P“4:F%=FPet+steps 

number=F:FPA=F4+2 

count=F4%: FPR=PA+2 

L 

QFT ant’ 
.**#* MGIN FROGRAM STARTS HERE 

.50und 

HEE 

SEI 

LDA number 

STA count 

LDA numbert+i 

STA countt+l 

.laape 

LDX #286 

-loopl 

g LDA sine,X 

STA port 
INX 

CFX #steps 

BNE ioopti 

\##e* DECREMENT COUNT ###* 

Ni 

LDA count 

SEC 

SBC #241 

STA count 

LDA cauntt+1 

SEC #2.0@8 

STA count+t+i 

BNE loape 

LDA #208 

CMF count 

BNE loops 

(ia et 

ETS 

q 

NEXT opt 

ENDFROC 

DEF FROCset_up tables 

REM *#*** SINE WAVE #### 

x=6 

FOR I=@ TQ steps-i 

yHl27eSIN(x) +127 

?i(table_startt+Ii=y 

H=xn+24F1T/steps 

NEXT I ee 

REM **** SG WAVE ##e# 

y=255: table start=tabie starttsteps 

FOR [=@ TQ steps-i 

?itable_start+tl)=y 
y=y-205/steps © 

NEXT I 

REM **#* SGUARE WAVE *##* 

y=255: table start=table_startt+steps 

FOR [=@ TQ steps/2-i 

?P(table startt+I)=y 

NEXT I 

y=@ 
FOR T=steps/2 TO steps-1 

Pitable startt+I)=y 

NEXT I 
REM **** DISPLAY DATA TABLES #*** 

table start=MC% 
FOR I=table_ start TO table start+3*steps-—1 

FRINT “1I,™*(I-table_start),? I 

NEXT I 

ENDFROC 
DEF FROCsample_program 

counter=MC%+3*steps: REM COUNTER LOBYTE LOCATION 

type=loopi+i: REM TYFE LOBYTE LOCATION 

caunt value=8A 

count Hi=count value DIV 256é 

count lo=count value MOD 256 

Pcaunter=count_ loa 

caunter ?l=count_ hi 

CES 
INFUT"WAVE TYPE (@) SINE (1) SAW (2) SQUARE" pwave 

Tilype-wavertsteps 

REPEAT 
FRINT“FRESS QNY EEY (xX TO EXIT)" 

AL=-GETS 

CALL sound 

UNTIL Aft="xk" 

BOTS sac 

ee a a eminem 
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n this instalment of our LOGO course, Ww 

look at the facilities the language offers for 
working with numbers. Loco would 
probably not be the first choice of language 
for applications that require a lot of 
calculation, but it does offer an impressive 
array of numerical primitives. 

Almost all Loco implementations support both 

integer and real (decimal) arithmetic, using the 
infix operators + - * / . These operators are called 
‘infix’ because they are written between the 
numbers they work on —for example, 3+4. 
Some Locos also include ‘prefix’ arithmetic, in 
which our example would be written as SUM 3 4. 

One advantage of this notation is that it is 

consistent with the way in which other Loco 

operations and commands are written. 
MIT Loco supports infix arithmetic only, but it 

is simple to program prefix forms if they are 
required. Define SUM and PRODUCT and try them: 

TO SUM :A:B 
OUTPUT :A+ :B 

END 

TO PRODUCT :A:B - 
OUTPUT :A * :B 

END 
The ‘precedence’ of operations (the order in which 
they are carried out) follows the usual 

mathematical rules. Anything within brackets is 

done first, followed by multiplications and 

divisions, and finally additions and subtractions: 

PRINT (3 + 4) *5 
PRINT3+4*5 

Now try the prefix forms: 

PRINT PRODUCT 5 SUM 3 4 
PRINT SUM 3 PRODUCT 4 5 

This demonstrates another advantage of the prefix 
forms — there is no need for rules of precedence 

and the line is evaluated in the same way as any 

other line of LoGo commands. : 
The usual division operation (/) gives the result 

as a real number. Two other operations, QUOTIENT 

and REMAINDER, are often useful for working with 

integers. 

QUOTIENT 47 5 is 9 
REMAINDER 47 95 is 2 

A standard method for converting a number in | 

base 10 to binary is to keep dividing the number by 

two until the result is zero. The binary number is 

found by writing the remainders found at each 

FIGURE IT OUT 
stage in reverse order. For example, to convert 12 
to binary: 

12/2 = 6; remainder = 0 

6/2 = 3; remainder = 0 

3/2 = 1; remainder = 1 

1/2 = 0: remainder = 1 

So, reading the remainders upwards, we find that 
decimal 12 is 1100 in binary. 

Using QUOTIENT and REMAINDER we can 
implement this technique easily in Loco. By 
putting the print statement after the recursive call 
we get the remainders printed in the correct 
(reverse) order. 7 

TOBIN :X 
IF :X = 0 THEN STOP 
BIN QUOTIENT :X 2 
PRINT1 REMAINDER :X 2 

END 

Two operations exist for rounding numbers — 
INTEGER and ROUND. INTEGER outputs the whole 
number part of a number, simply ignoring any 
figure after the decimal point, and ROUND rounds a 
number up or down to the nearest whole number. 

The following procedures calculate the 
compound interest on an investment at a given 
rate of interest. In PRETTY.PRINT, INTEGER is used to 
get the pounds, and ROUND is used to round the 
pennies to the nearest whole number. 

TO COMPOUND :PRINCIPAL :RATE :YEARS 
IF :YEARS = 0 THEN PRETTY.PRINT 
‘PRINCIPAL STOP 
COMPOUND :PRINCIPAL * (1+ :RATE/ 100 ) 

“RATE :YEARS — 1 | 
END 

TO PRETTY.PRINT : MONEY 
MAKE “POUNDS INTEGER :MONEY 
MAKE “PENCE ROUND ( : MONEY — 

:POUNDS ) * 100 : 
(PRINT :POUNDS “POUNDS :PENCE 

“PENCE) 
END.* 

TESTING TIME 
We have already used =, <, and > as logical tests 

in anumber of procedures. The logical operations 
ALLOF, ANYOF and NOT can be used to combine 

other tests. ALLOF is true if both its inputs are true, 
ANYOF is true if either of its inputs is true, and NOT is 
true if its input is false. So we get: 

IF ANYOF :X > 0:X=0 THEN PRINT “POSITIVE 
IF NOT :X <0 THEN PRINT “POSITIVE — 
IF ALLOF :X > 0:X < 100 THEN PRINT 

[BETWEEN 0 AND 100] 
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One Step Over 
The Line 
The Drunkard’s Walk theorem 

states that after N steps in 
completely random directions 
the probability is better than 
0.5 that the drunkard’s 
distance from the starting 
place will be less than SQR(N) 
steps. This is a statistical 

prediction based on a large 

number of steps, LOGO lets you 
test it for yourself: 

TO DRUNKWALK :STEPNO 

‘STEP 
CS REPEAT :STEPNO [RT 

(RANDOM 361) FD. 
STEP] : 

END 

DRUNKARD’S WALK 

STEVE MALONE 

ct ERE cst serra 
ee : 
HEHE enn ele eet i 
EEE Be aE ti 

: : . : 2) a : : ne a 

____sé=iouimgdumwdwléititsw 
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fete fh 
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The operation NUMBER? outputs TRUE if the input 
is a number, otherwise FALSE is returned. We use 
this in the procedure PRIME?, which outputs TRUE 
if its input is a prime, and FALSE otherwise. It 
begins by checking that the input is indeed a 
number, and that it is greater than two. PRIME.TEST 
then checks to see if any integer between the 
square root of the number and two will divide into 
it exactly, leaving no remainder. 

TO PRIME? :NO 
IF NOT NUMBER? :NO THEN PRINT [NOTA 

NUMBER DUMMY] STOP 
IF :NO < 2 THEN OUTPUT “FALSE 
OUTPUT PRIME.TEST :NO INTEGER SQRT :NO 

END | 

TO PRIME.TEST :NO :FACT 
IF FACT = 1 THEN OUTPUT “TRUE 
IF (REMAINDER :NO :FACT ) = 0 THEN OUTPUT 

“FALSE 
OUTPUT PRIME.TEST :NO :FACT — 1 

END 

RANDOM NUMBERS 
RANDOM n outputs a random integer between 0 
and n-1. The procedure DRUNK makes the turtle 
stagger across the screen, turning a random angle 
at each step. The input A gives the maximum size 
of the turn that can be made at any time. If you run 
this procedure you will find that the turtle turns in 
vague circles, moving to the left or to the right 
depending on the value assigned to A. 

TO DRUNK :A 
FORWARD 1 
RIGHT (— :A/2 + RANDOM :A) 
DRUNK:A 

END 

or 
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Pi COMES TO MONTE CARLO 

The so-called ‘Monte Carlo method’ is a 
technique for solving mathematical problems 
through the use of random numbers. 

We'll demonstrate by finding an approximation 
to pi by using this method. Our illustration shows a 
quarter-circle drawn within a square. The area of 
the square is 100 X 100 square units, and the area 
of the quarter-circle is (1+4) X pi X 100 x 100 
square units. The ratio of the areas circle + square 
is equal to pi + 4. Now drop a pin at random on the 
square 1,000 times and count how many times the 
pin falls within the quarter-circle; call this number 
IN. The value of IN/1000 should be approximately 
the same as the result of: circle + square — 
i.e. pi + 4. So if we do the experiment, multiply IN 
by four and divide by 1,000, then the result should 
be an approximation to pi. That is precisely what 
the following procedures do: 

MAKE “IN 0 
MC1 1000 100 100 , 
(PRINT [VALUE OF PI 1S] 0.004 * (:IN) ) 

END. . 

TO MC1 :NO :XNO :YNO 
IF :NO=0 THEN STOP 
RANDOM.POINT :XNO :YNO 
IF INSIDE? THEN MAKE “IN :IN + 1 
MC1 :NO — 1 :XNO :YNO 

END 

The procedure MC simply sets the conditions, calls 
MC1 and prints the results. MC1 does most of the 
work, calls RANDOM.POINT to position the turtle, 
and then increments IN if the point is inside the 
circle. This continues until the procedure has been 
carried out the correct number of times. 

TO RANDOM.POINT :XNO :YNO 
SETXY RANDOM :XNO RANDOM :YNO 

END 

TOINSIDE? | 
IF (XCOR * XCOR + YCOR * YCOR ) < 10000 

THEN OUTPUT “TRUE 
OUTPUT “FALSE 

END 

RANDOM.POINT sets the turtle at a random position 
within the square, while INSIDE? checks to see if the 
turtle lies within the circle. It will take some time to 
run this, but eventually a value for pi of 3.15999 
will be obtained. 
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Lissajous curves are an interesting family of 
curves in which the x co-ordinate of each point is 
determined by the sine function and the y co- 
ordinate by the cosine: | 

Logo Exercises 
1. Write a procedure to output the nth power of a 
number, so POWER 4 2 would output 16. 
2. Write a set of procedures to convert a decimal 
number to hexadecimal (use a similar technique to 
the binary example, but this time divide by 16). 
3. Write a procedure EVEN? that will output TRUE it 
a number is even and FALSE if itis not. 
4 Use the Monte Carlo method to find the area 
under the curve y=x° between x=0 and x=10. 
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DESIGN 

CODING 

‘Seeemeene’inacomtter’ pen ones: Someeuennn = tememnency 9 

TESTING 

MAINTENANCE 
Design Counts 
Observing the rules of good 
structure is difficult in machine 
code programming. 

Developing machine code 
programs according to the rules 
of good design is not difficult, 
however, and pays extra 
dividends in clarity of design 
and debugging time saved 

In the course So o far, we have ponccnanted 
on looking at the 6809's instruction set and 
seeing how a few of these instructions can be 
put together to form simple routines. 
However, writing larger, more ambitious 
programs is a far more complex task. We 
consider some techniques to give structure 
to larger Assembly language programs. 

We have talked a lot in the course about ae 
benefits of proper program design, modular 
construction and structured programming in the 
context of high-level languages. The difficulties of 
programming, and the benefits of good technique, 
are greatly magnified at the lower level. In 
Assembly language, there are usually no 
convenient control structures, such as BASIC’S 
WHILE... WEND and IF...THEN...ELSE, to 
enforce at least some sort of structure on the code. 
There are also no convenient notations, no data- 
typing of variables, and, to make it worse, you can 
expect an Assembly language program to be 
between six and ten times the size of a high-level 
program — in terms of the number of instructions. 
Above all, it is far easier to make errors, and these 
may have disastrous consequences — it is possible 
to wipe out all the data on a disk with an error ina 
single byte. To help make 6809 Assembly 
language programming less daunting, we consider 
here the most productive way to approach it. 

Theres nothing particularly new about 
structured programming or software engineering: 
experienced programmers have always known 
that forethought and clarity of approach were the 
ground rules for a successful programming style. 
What makes it seem new and original is the fact 

_ that the world of microcomputing has been largely 
amateur and hobbyist, but it is now becoming both 
more professional and more appreciative of the 
professional virtures. Nothing makes this point 
more clearly or memorably than your first attempt 
at debugging an undocumented, unstructured, 
hand-assembled machine code program that you 
created months ago and put aside. Good design 
and working methods mean good programming. 

STAGES IN PROGRAM DESIGN 
@ Problem Specification: In this stage, the 
Assembly language programmer must pay 
particular attention to the specification of input 
and output. Often peripheral devices are being 
controlled directly — especially the keyboard and 
screen — so the actual signals used must be 
considered. There may be timing constraints as 
well. You may not have any convenient routines 
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available that convert the string of bytes that come 
in or go out into the form in which the program 
reads the data — for example, converting a string 
of ASCII characters into a decimal number in 
binary form. It is important, therefore, to specify 
not only the form in which the data arises but also 
the form in which it is required by the rest of the 
program. 
e@ Program Design: We must now consider the 
processes that will turn the program’s specified 
input into its specified output. These should be 
grouped where possible into logically self- 
contained modules, along with the data that each 
process requires. There are two main techniques 
for ‘decomposing’ a program into modules: 
bottom-up, where you collect a set of what would 
appear to be useful modules in the context of the 
program and then try to fit them together; and fop- 
down, where the program is_ successively 
decomposed into smaller and smaller units, 
concentrating on the function of each unit rather 
than how it is to be achieved, until the process 
cannot usefully be continued. Only at that point 
do you start considering how each module can be 
assembled into code. 

Bottom-up design has the great advantage of 
using library modules, which are easy to put 
together, and the end result is likely to be more 
efficient in memory usage. The disadvantages are 
that the program as a whole is likely to prove more 
difficult to debug and test, and will not be so 
comprehensible. ‘Top-down design leads to better 
structured programs, and each stage in the process 
can be tested separately by means of ‘stubs’, which 
are short routines that take the place of as yet 
unwritten modules by simply accepting input and 
providing output in the correct form without doing 
any processing. The disadvantages are that the 
programs will tend to use more memory and the 
routines developed are unlikely to have any 
immediate use elsewhere. | 

Within each module the data requirements, 
data structures and algorithms must be specified. 
A flowchart is useful at this level for representing 
algorithms, but many people find it much easier to 
work in a loose kind of high-level language called a 
pseudo-code. PASCAL is usually used as the basis 
for this pseudo-code, but there is no reason why 
BASIC cannot be used. This enables us to design 
algorithms and data in a way that is familiar to us, 
and confines the lower-level work to the relatively 
simple task of translating the algorithm from 
pseudo-code into Assembly language. This is 

-much easier than trying to design and code in 
Assembly language at the same time. 

@ Coding: If the routines have been well designed 

| | 
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then this stage will probably be the easiest and least 
time-consuming of all. In order to translate from a 
high-level algorithm to low-level code it is 
essential that the control structures used at high 
level are carried over to the low level, avoiding the 
temptation to use BRA and JMP indiscriminately. 
Remember that any time you save by writing 
unstructured code is certain to be ‘clawed back’ in 
a frustrating trial-and-error debugging stage. In 
the diagram we give some examples of the way in 
which the common control structures can be 
coded — assuming, for simplicity, that the data 
items used are eight-bit. 

One problem with coding with control 
structures in this way is that the program is longer 
than it might be. Where space is not limited then 
there is no point in trying to save it; short code does 
not usually mean shorter running times but it does 
mean longer development and debugging times. 
Where space is limited, then it is better to write ina 
spacious structured way, and introduce a further 
stage of optimisation where the working code can 
be shortened to take into account particular 
circumstances, retaining as far as possible the 
essential structure. 
® Debugging: At this stage, each module is 
separately tested — using stubs where necessary — 
to make sure it gives appropriate outputs for valid 
inputs. Debugging Assembly language programs 
differs considerably from BASIC program 
debugging. To be able to see what is happening, it 
is necessary to be able to inspect the contents of the 
registers and the memory locations used by the 
program, and to change them if necessary. It is 
nearly impossible to debug an Assembly program 
without the use of a utility for setting and removing 
breakpoints. These enable you to run the program 
up to the next breakpoint, then dump the registers, 
and inspect and change memory contents. 
® Testing: Once each module has been tested and 
debugged then the entire program has to be put 
together and tested with appropriate data. ‘This is 
much easier when you know that all the 
component parts are working properly. 
® Documentation: Assembly language programs 
are more difficult to understand than high-level 
programs, so documentation is even more 
important. In particular, it is vital to document the 
use of memory, the use of the stack (especially 
while passing parameters), and the register usage 
within subroutines. 
® Maintenance: If a program is to be used over a 
period of time then at some point it will probably 
need revision — either to remove any bugs that 
appear or to make improvements. It is at this stage 
that time spent in careful design and 
documentation really pays off. If the program is 
badly designed and/or poorly documented then 
you are better off doing a complete rewrite rather 
than attempting to make alterations. 

Now we need a project to apply these design 
skills to: for our first venture in structured 
Assembly language programming nothing could 
be more appropriate than a machine code 

monitor/debugger. If you’ve used an assembler 
before, then you may be familiar with the kind of 
utilities to expect from a monitor/debugger. 
Essentially, it gives the machine code programmer 
the kind of editing facilities that the BAsIc 
programmer takes for granted — namely, the 
ability to inspect and change the contents of 
memory. | 

In the next instalment of the course we will take 
this project through the design and development 
stages described in this article, to create an 
important and extremely useful programming aid. 

Basic Backbone 
There are no control structures 

written into Assembly language, 
so it pays to import tried and - 
tested methods from high-level 
languages. The structures 
shown here are clear and 
graceful in both high- and low- 

level languages, and should be 
uséd to the exclusion of all 

~ alternatives ; 
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IAN McKINNELL 

The Game Progresses 
Deus Ex Machina can be either 
played or viewed as an 
entertainment. There is a wide 
variety of screens in the game, 
although some do bear a 
resemblance to others. The 
tactics required to maintain the 
‘ideal entity’ are changed 
constantly. The score is shown 
as a percentage in the bottom 

right-hand corner and slowly 
falls as the game — and the 

defect’s life — progresses 

THE DEFECT EFFECT - 

Aut 
offer ‘a completely new form of computer 
entertainment’. Combining elements of 
well-known arcade games with an audio 
soundtrack featuring showbusiness stars, 
this complex program allows you to take the 
leading role in a ‘fully animated televised 
fantasy’ 

As computer games have developed into a major 
part of the leisure industry, it was perhaps 
inevitable that software houses would join forces 
with other segments of the entertainment 
business. Automata Software, best known for its 
series of games featuring the Piman, has taken the 
first steps in this direction by developing a product 
that contains not only computer software but also 
an audio cassette that can be synchronised with the 
computer program to provide a soundtrack to the 

game. This soundtrack features well-known 
figures like Jon Pertwee and Frankie Howerd. 

The idea behind Deus Ex Machina, which took 
‘six months to develop and three months to 
program, is that an all-powerful computer of the 
future rebels and assists in the creation of a human 
‘defect’. The player, as the defect, passes through 
various stages in the game that depict experiences 
from childhood to old age. The player’s 

- involvement begins at conception by guiding the 
sperm towards the egg. As the child grows, it is 
under constant attack by the “defect police’. Itis up 
to the player to deflect these attacks, using either 
the keyboard or the joystick. Scoring is achieved 
by maintaining the ‘ideal entity percentage’, which 
begins at 99 per cent and drops under the assaults 
of the defect police. As the defect grows to 
adulthood, the nature of these attacks changes and 
the player must adapt to meet them. 
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Once the game is loaded, the audio soundtrack 
should be synchronised with the program. Care 
must be taken when this is done, as the various 
screens are timed to coincide precisely with the 
words and music, and this adds greatly to the 
enjoyment of the package. | 

The program is divided into two segments, one 
half on each side of the cassette, making up a total 
of 96 Kbytes of code. At the end of side one, after 
an amorous scene in which the player must move a 
cursor around the body to meet the kisses drifting 
towards it, the second side must be loaded. ‘The 
computer should not be switched off, and again 
care must be taken to synchronise the soundtrack 
correctly. Player involvement in the second half 
consists mainly in jumping over obstacles before 
reaching ‘old age’. At this point, large blocd clots 
appear onscreen, which must be broken up by the 
player. At the end of the game, no matter what the 
score, the defect dies. 

Deus Ex Machina is unusual in that there is no 
- winning score, and in fact the player need not even 
participate in the game at all. Events will unfold in 
the same way without any participation, so you 
have the choice of becoming involved in the game 
or sitting back and watching it as a piece of 
entertainment. The graphics are uniformly 
excellent and imaginative. Although none of the 
screens is breathtaking, they do reflect the care and 
attention to detail devoted to the whole package. 

The soundtrack music was written and 
performed entirely by Automata’s co-founder Mel 
Croucher, who also wrote the story. The songs 
themselves are pleasant but not exceptional. The 
best number accompanies the scene in which the 
defect comes to life, and is sung by Ian Dury. 

The, story and soundtrack are quite different 
from most computer games and reflect the non- 
violent philosophy behind all Automata’s 
computer games. Games enthusiasts who enjoy 
destroying fast-moving barrages of attacking 
aliens would probably be disappointed, and many 
people may find the semi-mystical content of the 
lyrics irritating. However, Automata should be 
heartily applauded for their innovative idea. The 
program is a bold experiment and will no doubt be 
considered an important step in the development 
of computerised entertainment. 
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DATABASE 
Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card. 

16-Bit Arithmetic Group 
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